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The continuum limit of lattice models arising in two-dimensional turbulence is
analyzed by means of the theory of large deviations. In particular, the Miller�
Robert continuum model of equilibrium states in an ideal fluid and a modifica-
tion of that model due to Turkington are examined in a unified framework, and
the maximum entropy principles that govern these models are rigorously
derived by a new method. In this method, a doubly indexed, measure-valued
random process is introduced to represent the coarse-grained vorticity field. The
natural large deviation principle for this process is established and is then used
to derive the equilibrium conditions satisfied by the most probable macrostates
in the continuum models. The physical implications of these results are dis-
cussed, and some modeling issues of importance to the theory of long-lived,
large-scale coherent vortices in turbulent flows are clarified.

KEY WORDS: fluid turbulence, statistical equilibrium, large deviation prin-
ciples.

1. INTRODUCTION

Both physical observations and numerical simulations show that a freely
evolving, turbulent fluid in two dimensions tends to form long-lived, large-
scale coherent structures.(26, 36) If the flow is allowed to evolve for a suf-
ficiently long time, these structures organize into a steady, stable vortex or
shear flow that persists within the small-scale turbulent fluctuations of the
vorticity field.(31, 37) While this scenario pertains to the idealized limit of
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Navier�Stokes equations in which the Reynolds number is sent to infinity,
it is nevertheless a distinguishing feature of turbulent two-dimensional fluid
motions that contrasts sharply with the general behavior of fully three-
dimensional flows.(6)

In this paper we study a class of models that have been proposed to
elucidate the self-organization of these coherent states. The continuum
models with which we are concerned are governed by maximum entropy
principles and are designed to distinguish the most probable macroscopic
states among all possible such states. These principles are, in turn, derived
from a microscopic model of the random vorticity field via the methodol-
ogy of equilibrium statistical mechanics. Indeed, the equations of motion of
an ideal fluid constitute a Hamiltonian system with infinitely many degrees
of freedom, for which, in principle, the standard methods of statistical equi-
librium theory are applicable. The construction of a meaningful Gibbs
measure, however, requires that the continuum system be replaced by an
approximating system with finitely many degrees of freedom and that an
appropriately scaled continuum limit be taken. It is precisely on this issue
that the present paper is focused. Specifically, we examine in detail how to
employ the theory of large deviations to derive the maximum entropy prin-
ciples that govern these continuum models.

Such a continuum model of coherent structures has been proposed
independently by Miller et al.(28, 29) and Robert et al., (34, 35) and we shall
refer to it as the Miller�Robert model. This theory builds on earlier and
simpler theories, which generally are derived by two different approaches.
In one approach, initiated by Onsager(32) and later developed by Joyce and
Montgomery(21, 30) and others, (17, 22, 4) the fluid vorticity is replaced by a
dilute gas of point vortices, and a maximum entropy principle is obtained
from a mean-field theory of the point vortex system. In the other approach,
investigated by Kraichnan(23) and others, (3) the vorticity is represented by
a finite number of Fourier modes, a spectrally projected dynamics is
defined, and a canonical ensemble is constructed from the two quadratic
invariants for these dynamics. Both of these approaches suffer from the
defect that they retain only a few of the dynamical constraints inherent in
the underlying partial differential equations. For this reason, information
contained in the continuum dynamics is lost in passing to a finite-dimen-
sional, approximate dynamics and then to a continuum limit. The impor-
tant innovation of the Miller�Robert model is that it incorporates all the
conserved quantities of two-dimensional ideal fluid dynamics. Specifically,
the Miller�Robert model includes the entire family of global vorticity
integrals, also known as generalized enstrophies, (18) along with the energy
integral as constraints in its maximum entropy principle. It therefore sub-
sumes the earlier theories as special cases or as limiting cases.
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Nevertheless, the Miller�Robert model is based on some implicit
assumptions about the structure of small-scale fluctuations of vorticity,
which are not supported by the underlying continuum dynamics. Unlike its
simpler predecessors, the model is not derived from a sequence of finite-
dimensional approximations, each having a well-defined dynamics and
corresponding conserved quantities. Instead, the theory is deduced by
postulating that the discrete analogue of the conserved quantities for the
continuum dynamics can simply be imposed on each finite-dimensional
statistical equilibrium model. Recently, Turkington(39) has criticized these
assumptions and has proposed a modification of the Miller�Robert model
that is based on invariance with respect to the exact continuum dynamics.
In this paper we shall refer to this modification as Turkington's model. The
essential difference between these two models, which otherwise have a
similar structure, lies in the way that the global vorticity integrals enter as
constraints into their corresponding maximum entropy principles. As a
consequence of this difference in the microscopic modeling, the two
theories make different macroscopic predictions about coherent states.

Rather than enter into modeling issues, in the present paper we shall
concentrate on showing how models of this kind can be analyzed with the
same machinery as is employed to study other models in statistical
mechanics, such as standard models of ferromagnetism. In particular, we
shall demonstate how these models of coherent states in two-dimensional
turbulence fit into the general framework articulated by Ellis for the large
deviation analysis of statistical equilibrium models (ref. 15, Sections 9�12).
In this context, we shall obtain our main result, which is a new, rigorous
derivation of the continuum limit for the Miller�Robert model and
Turkington's model. A key step in this analysis is the identification of a
so-called ``hidden process'' that links the microscopic model, defined by a
sequence of lattice Gibbs measures, to the macroscopic continuum model,
governed by a variational principle involving a relative entropy and
appropriate representations of the invariants that enter into the Gibbs
measures. With respect to the Gibbs measures, this hidden process satisfies
a large deviation principle, which distinguishes the equilibrium macrostates
as the most probable states in the sense that any other macrostate has an
exponentially small probability of being observed. The variational principle
for the equilibrium macrostates is constructed from the rate function for
this large deviation principle.

With this general approach we extend and clarify, both from a concep-
tual viewpoint and a technical viewpoint, the program initiated by Miller,
Robert, and co-workers. From a conceptual viewpoint, we remove an ele-
ment of doubt that has existed about the validity of these models. The
doubt concerns the question of whether the continuum models and their
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maximum entropy principles are entirely determined by taking the limit of
some well-defined Gibbs measures or whether they are mean-field theories
that rely on some additional approximation. This question has been raised
both in theoretical attempts to justify the Miller�Robert model(17) and in
numerical simulations to validate its predictions.(6) We show that the con-
tinuum limit of such models, which is scaled differently from the usual ther-
modynamic limit, is indeed exactly described by their maximum entropy
principles. We are therefore able to say that the attributes of models of this
kind stem from how their finite-dimensional Gibbs measures capture the
underlying continuum dynamics. We illustrate this point by contrasting the
formulation of Miller�Robert with the modification due to Turkington.

From a technical viewpoint, we offer a unified and rigorous method of
analyzing the continuum limits for both the Miller�Robert model and
Turkington's model. This method is the mathematical expression of the
physical reasoning pioneered by Miller et al., (28, 29) which focuses on the
canonical ensemble. Our key innovations are, first, to introduce a certain
doubly indexed process that approximates the hidden process and, second,
to derive the large deviation principle for the hidden process from a large
deviation principle for the doubly indexed process. We construct this
doubly indexed approximation by averaging over an intermediate scale,
thereby capturing in a natural way the coarse-graining inherent in the
macrostates. Not only does our construction embody the physical insights
in the work of Miller et al., (28, 29) but also it allows us to derive the con-
tinuum limits directly from the familiar Sanov's Theorem for the empirical
measures of i.i.d. random variables. On the other hand, Michel and Robert
base their large deviation analysis of the continuum limit of the Miller�
Robert model on the microcanonical ensemble, (27, 33) using an indirect
argument that relies on Baldi's Theorem, an infinite-dimensional general-
ization of the Ga� rtner-Ellis Theorem (ref. 9, Thm 4.5.20). In contrast to
our approach, theirs is less closely tied to the underlying physics and, in
particular, de-emphasizes the role of spatial coarse-graining in the large
deviation behavior.

A number of issues related to the present paper are treated in some
detail in a sequel.(16) There, we study the continuum limit of the micro-
canonical ensemble for a class of statistical mechanical models that includes
the Miller�Robert model and Turkington's model as special cases. In the
context of the equivalence of the microcanonical and canonical ensembles,
we also compare those results with the results obtained in the present
paper.

The theorems proved here may have applications beyond the realm of
ideal equilibrium theories. For instance, the recent work of Chorin, Kast,
and Kupferman(8) suggests that equilibrium measures may be used to
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approximate the evolution of a system with many degrees of freedom by
building mean equations for a few well chosen observables. These ideas
open some exciting possibilities for modeling the temporal behavior of two-
dimensional turbulence.

The paper is organized as follows. In Section 2, we formulate the lat-
tice models of Miller�Robert and of Turkington in a unified fashion, and
we indicate the modeling hypotheses used in their constructions. We state
our main theorem in Subsection 3.1 [Theorem 3.1] after laying out the
general framework for the large deviation analysis. Then in Subsections 3.2
and 3.3 we pause to discuss the fluid dynamical implications of our main
results and the maximum entropy principles for the two continuum models.
In Section 4, we complete the proof of the main theorem by establishing
the properties of the hidden process that are needed to invoke our general
method; here we define the doubly indexed process and prove that it
approximates the hidden process. Finally, in Section 5 we outline the proof
of the large deviation principle for the doubly indexed process itself. This
result is a special case of a general theorem that we give in another
paper.(1)

2. STATISTICAL EQUILIBRIUM MODELS

2.1. Gibbs Measures and Lattice Models

In two dimensions, the equations governing the evolution of an ideal
fluid are reducible to the vorticity transport equation(6, 25)
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in which | is the vorticity, � is the stream function, and 2=�2��x2
1+���x2

2

denotes the Laplacian operator on R2. The two-dimensionality of the flow
means that these quantities are related to the velocity field v=(v1 , v2 , 0)
according to (0, 0, |)=curl v and v=curl(0, 0, �). All of these fields
depend upon the time variable t # [0, �) and the space variable x=(x1 , x2),
which runs through a bounded domain X/R2. Throughout this paper we
assume that X equals the unit torus T 2.[0, 1]_[0, 1] equipped with doubly
periodic boundary conditions. By making this technical simplification, we
follow a common practice in most theoretical and numerical studies of two-
dimensional turbulence. Nevertheless, our results have natural extensions
from this prototype geometry to general bounded domains with physically
appropriate boundary conditions.
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The governing equations (2.1), which are equivalent to the Euler equa-
tions for an incompressible, inviscid fluid, can be expressed as a single
equation for the scalar vorticity field |=|(x, t). In our prototype
geometry where X=T 2, the periodicity of the velocity field implies that
�X | dx=0. With this restriction on its domain, the Green's operator
G=(&2)&1 taking | into � with �X � dx=0 is well-defined. More
explicitly, G is the integral operator

�(x)=G|(x)=|
X

g(x&x$) |(x$) dx$ (2.2)

where g is the Green's function defined by the Fourier series

g(x&x$). :
0{z # Z2

|2?z|&2 e2?iz } (x&x$) (2.3)

Consequently, (2.1) can be considered as an equation in | alone. The vor-
ticity transport equation (2.1) has a natural interpretation in terms of the
flow maps ,t: X � X defined by fluid particle trajectories x(t)=,t(x0),
where dx�dt=v(x, t) and x(0)=x0. Namely, |(,t(x0), t)=|0(x0) for all
x0 # X and for all t>0. Thus, the vorticity is rearranged by the area-pre-
serving flow maps for the velocity field, which itself is induced by the vor-
ticity at each instant of time.(6, 25)

Even though the initial value problem for the equation (2.1) is known
to be well-posed for weak solutions whenever the initial data |0=|( } , 0)
belongs to L�(X), (25) this determinstic evolution does not provide a useful
description of the system over long time intervals. Indeed, as many numeri-
cal simulations and physical experiments show, a typical solution develops
finite amplitude fluctuations in its vorticity field on increasingly fine spatial
scales as time proceeds. These fluctuations result from the self-straining of
the vorticity by the induced flow maps ,t, which engenders a rapid growth
in the vorticity gradient |{||. For this reason, the information required to
specify the deterministic state | exceeds any given bound after a sufficiently
long time. When one seeks to quantify the long-time behavior of solutions,
therefore, one is compelled to shift from the microscopic, or fine-grained,
description inherent in | to some kind of macroscopic, or coarse-grained,
description. We shall make this shift by adopting the perspective of equi-
librium statistical mechanics. That is, we shall view the underlying deter-
ministic dynamics as a means of randomizing the microstate | subject to
the conditioning inherent in the conserved quantities for the governing
equation (2.1), and we shall take the appropriate macrostates to be the
canonical Gibbs measures P(d|) built from these conserved quantities. In
doing so, we accept an ergodic hypothesis that equates the time averages
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with canonical ensemble averages. Given this hypothesis, we expect that
these macrostates capture the long-lived, large-scale, coherent vortex struc-
tures that persist among the small-scale vorticity fluctuations. The charac-
terization of these self-organized macrostates, which are observed in
simulations and experiments, is the ultimate goal of our theory.

The conserved quantities that determine the Gibbs state are the energy,
or Hamiltonian functional, and the family of generalized enstrophies, or
Casimir functionals.(25) Expressed as a functional of |, the kinetic energy is

H(|). 1
2 |

X_X

g(x&x$) |(x) |(x$) dx dx$ (2.4)

The so-called generalized enstrophies are the global vorticity integrals

A(|).|
X

a(|(x)) dx (2.5)

where a is an arbitrary continuous real-valued function on the range of the
vorticity. These additional invariants A arise from the fact that the vorticity
is rearranged under the area-preserving flow maps ,t. Their presence in
two-dimensional vortex dynamics gives the statistical equilibrium theory its
distinctive features.

In terms of the dynamical invariants H and A, the canonical ensemble
is defined by the formal Gibbs measure

P;, a(d|)=Z(;, a)&1 exp[&;H(|)&A(|)] 6(d|) (2.6)

where Z(;, a) is the associated partition function and 6(d|) denotes some
invariant product measure on some phase space of all admissible vorticity
fields |. Of course, this formal construction is not meaningful as it stands,
due to the infinite dimensionality of such a phase space. We therefore
proceed to define a sequence of lattice models on X=T 2 in order to give
a meaning to this formal construction.

Let L be a uniform lattice of n.22m sites s in the unit torus T 2, where
m is a positive integer. The intersite spacing in each coordinate direction
is 2&m. We make this particular choice of n to ensure that the lattices are
refined dyadically as m increases, a property that is needed later when we
study the continuum limit obtained by sending n � � along the sequence
n=22m. Each such lattice of n sites induces a dyadic partition of T 2 into
n squares called microcells, each having area 1�n. For each s # L we denote
by M(s) the unique microcell containing the site s in its lower left corner.
Although L and M(s) depend on n, this is not indicated in the notation.
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The phase space for the lattice models is the product space 0n.Yn,
where Y is a compact set in R with K.max[ | y|: y # Y]. The configura-
tions in 0n are the microstates for the lattice model on L and are denoted
by `=[`(s), s # L]. These microstates ` represent a discretization of the
continuum vorticity field | # L�(X). Accordingly, Y is taken to be a com-
pact set containing the range of the vorticity, which is an invariant of the
governing equation (2.1). We let P(0n) denote the set of Borel probability
measures on 0n .

On the phase space 0n we consider a finite product measure 6n that
assigns to a Borel subset B of 0n the probability

6n[B].|
B

`
s # L

\(d`(s)) (2.7)

In this formula \ is a given probability measure on Y that is meant to
encode the prior information on the microscopic fluctuations in the lattice
model. With respect to 6n , [`(s), s # L] is an independent, identically dis-
tributed collection of random variables with common distribution \. We
refer to \ as the prior distribution. The prior distribution \ and its support
Y are particular ingredients in each lattice model, and their choice is a
modeling issue that requires separate justification. For this reason, we defer
the complete specification of \ and Y until the later subsections where we
describe two particular models individually.

The Hamiltonian for the lattice model is defined in terms of the spec-
tral truncation of the Green's function g introduced in (2.3). The lattice
Hamiltonian Hn maps 0n into R and is defined by

Hn(`).
1

2n2 :
s, s$ # L

gn(s&s$) `(s) `(s$) (2.8)

where gn is the lattice Green's function defined by the finite Fourier sum

gn(s&s$). :
0{z # L*

|2?z|&2 e2?iz } (s&s$) (2.9)

over the finite set

L*.[z=(z1 , z2) # Z2 : &2m&1<z1 , z2�2m&1]

The generalized enstrophy An for the lattice model maps 0n into R and is
defined by

An(`).
1
n

:
s # L

a(`(s)) (2.10)
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where a is any continuous function mapping Y into R. Although An

depends on a, this is not indicated in the notation. The functions Hn and
An on 0n are the natural discretizations of the corresponding functionals of
the vorticity field given in (2.4) and (2.5), respectively.

In terms of these quantities we define the partition function

Z(n, ;, a).|
0n

exp[&;Hn(`)&An(`)] 6n(d`) (2.11)

and the lattice Gibbs state Pn, ;, a , which is the probability measure that
assigns to a Borel subset B of 0n the probability

Pn, ;, a[B].
1

Z(n, ;, a) |
B

exp[&;Hn(`)&An(`)] 6n(d`) (2.12)

These probability measures are parametrized by the constant ; # R and the
function a # C(Y). The dependence of Gibbs measures on the inverse tem-
perature ; is standard, while their dependence on the function a that deter-
mines the enstrophy functional is a novelty of this particular statistical
equilibrium problem.

At this point in the formulation of the statistical equilibrium theory, it
is necessary to connect the parameters ; and a in the lattice Gibbs states
with the global conserved quantities to which they correspond. Indeed, the
probability measure Pn, ;, a in (2.12) is intended to describe the time-averaged
behavior of the ideal fluid flow, which is assumed to evolve ergodically from
a given initial state |0. The problem of interest, therefore, is to determine ;
and a so that the ensemble mean values (Hn) and (An) coincide with the
values derived from an initial state. While the duality between ; and (Hn)
is standard, the determination of a from the family of generalized enstrophy
mean values is a subtle point that requires careful attention. Moreover,
unlike the Hamiltonian Hn , the generalized enstrophy An is sensitive to the
smallest scales on which vorticity fluctuations occur. Accordingly, the inclu-
sion of An in the lattice Gibbs state is coupled with the choice of the prior
distribution \, which controls the microstate fluctuations in the lattice
model. In the next two subsections, therefore, we discuss this point explicitly
for the two different models��the one due to Miller(28) and Robert (34) and
the one proposed by Turkington.(39) These models are derived from different
hypotheses about the microscopic properties of typical ideal fluid motions.

2.2. Miller�Robert Model

The theory proposed by Miller(28) and Robert(34) is based on a direct
transcription of the invariants from the continuum dynamics to the lattice
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model. In other words, it does not construct a lattice dynamics and then
identify the conserved quantities for this dynamics, but instead imposes a
discretized version of the continuum invariants on the lattice model. We
can summarize their approach as follows.

We seek to include the complete family of generalized enstrophy
invariants for ideal fluid flow in X into the model; namely,

|
X

a(|(x, t)) dx=|
X

a(|0(x)) dx for all t>0

where |(x, t) is the solution to (2.1) with initial condition |0(x). Since a
is an arbitrary continuous function, these invariants can be rewritten in the
measure-valued form

|
X

$|(x, t)(dy) dx=|
X

$|0(x)(dy) dx for all t>0

On this basis we choose the measure \ that defines the finite product
measure (2.7) to be

\(dy).|
X

$|0(x)(dy) dx (2.13)

Thus, the prior distribution \ for the lattice model is taken to be the exact
invariant for the continuum dynamics, which is fixed by the initial state |0.
Also, we let Y be the support of \, which coincides with the closure of the
range of |0. In this way, the exact rearrangement of vorticity | that holds
for the continuum dynamics is imposed on the microstates ` for the lattice
model.

The function a that appears in the lattice Gibbs state Pn, ;, a is taken
to be dual to the constraint

�1
n

:
s # L

$`(s)(dy)�=\(dy) (2.14)

in the same way that ; is dual to the constraint

(Hn(`)) =H(|0) (2.15)

Here, ( } ) denotes the ensemble average defined by Pn, ;, a . In other words,
given an initial state |0 and any n=22m, we adjust the parameters ; and
a so that the constraints (2.14) and (2.15) are fulfilled. Formally, one can
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see that ; and a arise as Lagrange multipliers associated with these con-
straints by casting the lattice Gibbs measure as the solution to the con-
strained minimization problem

minimize R(P | 6n) over P # P(0n) subject to

|
0n

Hn(`) P(d`)=H(|0), |
0n
\1

n
:

s # L

$`(s)(dy)+ P(d`)=|
X

$|0(x)(dy) dx
(2.16)

in which the objective functional is the relative entropy

R(P | 6n).{|0n
\log

dP
d6n

(`)+ P(d`) if P<<6n
(2.17)

� otherwise

The solution P=Pn, ;, a to this problem exists and is unique because the
objective functional is strictly convex and lower semicontinous with respect
to the weak convergence of measures and the constraints are imposed on
linear functionals. A formal calculation with the Lagrange multiplier rule
shows that this solution is the lattice Gibbs state (2.12), in which ; and a,
respectively, are multipliers for the constraints on energy and global vor-
ticity distribution.(19, 42)

In this way the statistical equilibrium theory is closed, and the lattice
model is completely specified in the sense that the organized states, or
coherent structures, which are expected to emerge from a given initial state
|0 are identified with that lattice Gibbs measure whose defining parameters
are determined by |0. Through the values of its energy and generalized
enstrophy, the initial state supplies the prescribed, or controllable, param-
eters in the theory, while the ensemble parameters ; and a are determined
by these values.

2.3. Turkington's Model

The implicit assumption in the Miller�Robert theory that the micro-
states ` on the lattice L satisfy the same constraints as the solutions |
to the Euler equations on the domain X is criticized in ref. 39, where a
modified theory based on more realistic assumptions is developed. We now
summarize the motivation for this alternative model, referring the reader to
ref. 39 for a full discussion and justification.

We seek a statistical equilibrium theory that is consistent with the
exact continuum dynamics (2.1). In formulating a lattice model, therefore,
we need to determine how the conservation properties of the continuum
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vorticity fields | are reflected in the lattice microstates `. For any finite n,
these microstates ` can be viewed as local averages of the fields |, and
under such an averaging the continuum dynamics on X can be observed on
the lattice L. In ref. 39, this approach is carried out using a spatial averag-
ing, or a spectral windowing, defined by convolutions `=Kn V | with
positive approximate identities Kn chosen to scale with the lattice spacing
2&m as n=22m � �; that is, the limit of 2&2mKn(2&mx) exists and equals
a function K(x) # C(R2) with K�0 and � K dx=1. An analysis of the effect
of this local averaging on the conserved quantities shows that the energy
is retained to a good approximation, while all the nonlinear generalized
enstrophies are partially lost, even in the limit as n � �. Of course, this
effect is to be expected since the ideal dynamics produce fluctuations in the
vorticity on arbitrarily small scales as time proceeds, and so some informa-
tion in the continuum field | is eventually lost in the averaging that defines
the observed microstate `. For the same reason, the prior distribution in
the Miller�Robert model, which is based on exact vorticity rearrangement,
is also lost. Consequently, the model proposed by Turkington relaxes the
family of enstrophy constraints and chooses a different prior distribution.
The precise formulation of this model is as follows.

The prior distribution \ in the product measure (2.7) for this model is
the uniform measure

\(dy)=
1

|Y|
1Y( y) dy (2.18)

on the smallest interval Y=[min |0, max |0] containing the range of the
initial state |0. In contrast to the choice of \ in the Miller�Robert model,
the prior distribution in (2.18) is not necessarily supported on the range
of |0. Indeed, an observed microstate `=Kn V | will in general take values
outside that range, but inside the convex hull of that range, namely, the
interval Y. The choice (2.18) has two different justifications. From an
information theoretic standpoint, it is the most random, or most diffuse,
measure consistent with the prior information on the distribution of `;
namely, the lower and upper bounds min |0�`�max |0. From a
dynamical standpoint, it defines a product measure 6n on the phase space
0n that is invariant under the spectrally truncated dynamics for the lattice.
That is, if |(x, t) is replaced by a finite Fourier series defined via the dis-
crete Fourier transform on the lattice L and if that Fourier series evolves
under the projected equations of motion, then the induced phase flow on
the microstates `=Kn V | # 0n satisfies the Liouville property. For these
two reasons, the prior distribution (2.18) is the most natural choice to close
the model.
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The generalized enstrophy constraints for the model are derived from
the fact that

An(`).
1
n

:
s # L

a(`(s))�A(|0)

.|
X

a(|0(x)) dx for all convex a # C(Y)

This family of inequalities, which relies on Jensen's inequality, captures the
effect of the local averaging `=Kn V | on any convex function a. Only the
partial information contained in these convex inequalities is retained in the
model, and all other generalized enstrophy constraints are considered lost.
Rather than use the constraints in this form, the model replaces this family
of inequalities by the equivalent family of inequalities

1n(`, _).
1
n

:
s # L

#(`(s), _)�1 (|0, _)

.|
X

#(|0(x), _) dx for all _ # Y (2.19)

where #( y, _) denotes the Green function on the interval Y defined by the
boundary-value problem

d 2

dy2 #( y, _)=$( y&_) for y # Y, #( y, _)=0 for y # �Y

For each _ # Y, #( y, _) is a piecewise linear, convex function of y # Y. We
denote by M(Y) the space of Borel measures on Y. Any convex function
a # C(Y) can be represented in terms of #( y, _) by

a( y)=|
Y

#( y, _) :(d_)+c0+c1y (2.20)

for some : # M(Y) and some real constants c0 and c1 . Consequently, the
lattice Gibbs state for Turkington's model is parametrized by ; # R and
: # M(Y), and these parameters are dual to the constraints

(Hn(`))=H(|0), (1n(`, _)) �1 (|0, _) for all _ # Y (2.21)

where ( } ) denotes expectation with respect to Pn, ;, a . This _-parametrized
family of inequalities plays the same role in this model that the global vor-
ticity distribution constraint (2.14) plays in the Miller�Robert model.
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The lattice Gibbs state for Turkington's model is most easily charac-
terized as the solution to the minimization problem

minimize R(P | 6n) over P # P(0n) subject to

|
0n

H(`) P(d`)=H(|0), |
0n

1n(`, _) P(d`)�1 (|0, _) for all _ # Y

(2.22)

While the relative entropy R(P | 6n) has the same form (2.17) as in the
Miller�Robert model, the product measure 6n is defined by a different
prior distribution \. This characterization shows that the statistical equi-
librium measure P=Pn, ;, a defining this lattice model exists and is unique
for any initial state |0. Indeed, by virtue of its strict convexity and lower
semicontinuity, the relative entropy attains its minimum over any closed,
convex set of probability measures P at a unique measure; in particular,
this is the case for the closed, convex set specified by the constraints in
(2.22). The solution Pn, ;, a to (2.22) has the canonical form (2.12), in which
; is the Lagrange multiplier for the energy constraint and : is the Kuhn�
Tucker vector associated with the convex enstrophy inequalities.(19, 42)

We note that one further constraint must be appended to (2.22);
namely, the equality constraint on the total circulation

�1
n

:
s # L

`(s)�=|
X

|0(x) dx=0

which necessarily vanishes in our prototype geometry. This constraint
corresponds to the coefficient c1 of the linear term in the representation of
the arbitrary convex function a exhibited in (2.20). Since this extra term in
the Gibbs measure Pn, ;, a can be absorbed into the function a, we shall
ignore the total circulation constraint in (2.22). The modifications needed
to include it are straightforward.

3. LARGE DEVIATION PRINCIPLE AND CONTINUUM LIMIT

Our main results concern the continuum limit of the lattice models
introduced in the previous section. As in many other statistical mechanics
problems (ref. 15, Sections 9�12), the powerful apparatus of large deviation
theory can be applied to study these asymptotics. To put our problem in
this general context, we need to represent the functionals that occur in the
lattice Gibbs state in terms of a so-called ``hidden process'' on a ``hidden
space.'' In effect, the hidden process provides a macroscopic representation
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of the random microstate; the hidden space, in which the hidden process
takes values, consists of all the admissible macrostates of the model.
Specifically, we shall construct a measure-valued process Yn whose argu-
ment is the random microstate vorticity ` # 0n and then study the large
deviation behavior of the Pn, n;, na -distributions of Yn as n � �. We shall
take the hidden space to be the space of measures on X_Y whose first
marginal is Lebesgue measure on X.

A crucial ingredient in the continuum limit is the scaling of ; and a
with n=22m. This particular scaling ensures that the expectations of Hn

and An with respect to the lattice Gibbs measure remain finite as n tends
to infinity; any other scaling of the parameters ; and a leads to expecta-
tions that either go to zero or to infinity in the continuum limit. In essence,
this scaling reflects the fact that the continuum limit is not the usual
thermodynamic limit. Instead, the continuum models that we study reside
on fixed domains and are defined at fixed values of total energy and
generalized enstrophy, which do not scale with the number of degrees of
freedom n. These fundamental features of the models are common to all
statistical equilibrium theories of coherent vortex structures, whether they
are built from a gas of point vortices, (17) a spectral truncation of the vor-
ticity field, (23) or a spatial discretization of the vorticity field.(28) From the
point of view of our present analysis, these known results motivate the
choice of scaling parameters in the Gibbs measures Pn, n;, na and hence the
norming constants for the large deviation principle.

The necessary rescaling can also be accomplished by replacing the
relative entropy functional in the constrained minimization problems (2.16)
and (2.22), governing respectively the Miller�Robert lattice model and
Turkington's lattice model, by the specific relative entropy per lattice site,
n&1R(P | 6n). The Lagrange multipliers for these rescaled optimization
problems, say ;� n and a~ n , then have finite limits as n � �. Moreover, the
specific relative entropy per lattice site has a finite continuum limit, which
coincides with the objective functional in the maximum entropy principles
for the equilibrium macrostates. An analysis along these lines is outlined in
ref. 39.

In the present paper we analyze the statistical equilibrium measures in
a manner that allows us to treat both the Miller�Robert model and
Turkington's model simultaneously. Namely, we assume that a prior dis-
tribution \ supported on a compact set Y is given together with specified
parameters ; and a, and we consider the lattice models defined by the
scaled Gibbs measures Pn, n;, na . While the two models differ in how \, ;, a
are chosen and in how these quantities are determined from a given initial
vorticity field, their governing Gibbs distributions have the same general
form, and so our main Theorem 3.1 encompasses them both.
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3.1. Statement and Proof of the Main Theorem

The space of probability measures on X_Y, which we denote by
P(X_Y), is central to our analysis. When metrized with the metric d
defined in (4.2), P(X_Y) is a Polish space (a complete, separable metric
space), and convergence of measures with respect to d is equivalent to weak
convergence. By Prohorov's Theorem, P(X_Y) is compact since both X

and Y are compact. The large deviation principle given in Theorem 3.1
involves the relative entropy R(+ | &) of + with respect to &, where + and &
are measures in P(X_Y). This quantity is defined by

R(+ | &).{|X_Y \log
d+
d&+ d+ if +<<&

� otherwise

In particular, we need the relative entropy R(+ | %_\) of + with respect to
the product measure %_\, where %(dx)=dx is Lebesgue measure on
X=T 2 and \(dy) is the prior distribution on the compact subset Y/R.
Then R( } | %_\) defines a rate function on P(X_Y) in the sense of large
deviation theory since it is a lower semicontinuous mapping of the compact
space P(X_Y) into [0, �]. These standard properties are shown in
Lemmas 1.4.1 and 1.4.3(b) of ref. 13.

We now list the key elements in our analysis of the continuum limit
of the lattice Gibbs states by means of large deviation theory.

(i) Hidden space. This is the space P%(X_Y) of probability
measures on X_Y with first marginal %. P%(X_Y) is a closed subset of
P(X_Y) and thus is also a compact Polish space.

(ii) Hidden process. This is the measure-valued random variable
Yn that maps 0n.Yn into P%(X_Y) and is defined by

Yn(dx_dy)=Yn(`, dx_dy).%(dx)� :
s # L

1M(s)(x) $`(s)(dy) (3.1)

where M(s) is the unique microcell of the lattice L containing the site s.

(iii) Energy representation function. This is the function H� that
maps P%(X_Y) into R and is defined by

H� (+). 1
2 |

(X_Y)2
g(x&x$) yy$ +(dx_dy) +(dx$_dy$) (3.2)
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Let K.max[ | y|: y # Y]. In Lemma 4.4 we will verify that H� is bounded
and continuous and that there exists C<� such that for each n

sup
` # 0n

|H� (Yn(`))&Hn(`)|�CK 2 \log n
n +

1�2

(3.3)

(iv) Generalized enstrophy representation function. This is the
function A� that maps P%(X_Y) into R and is defined by

A� (+).|
X_Y

a( y) +(dx_dy) (3.4)

where a is a continuous real-valued function on Y; the dependence of A� on
a is not indicated in the notation. In Lemma 4.4 we will verify that A� is
bounded and continuous and that for all ` # 0n

A� (Yn(`))=An(`) (3.5)

(v) Large deviation principle for Yn with respect to 6n . In
Lemma 4.3 we will verify that Yn satisfies the Laplace principle on
P%(X_Y) with rate function R( } | %_\). That is, for any bounded con-
tinuous function 8 mapping P%(X_Y) into R

lim
n � �

1
n

log |
0n

exp[n8(Yn)] d6n= sup
+ # P%(X_Y)

[8(+)&R(+ | %_\)]

This Laplace principle is equivalent to the large deviation principle with
the same rate function (ref. 13, Thms. 1.2.1 and 1.2.3); in other words, for
any closed subset F of P%(X_Y)

lim sup
n � �

1
n

log 6n[Yn # F ]�&R(F | %_\)

and for any open subset G of P%(X_Y)

lim inf
n � �

1
n

log 6n[Yn # G]� &R(G | %_\)

Here, R(B | %_\) denotes the infimum of R( } | %_\) over the set B.

Properties (iii)�(v) are proved in Section 4. With (i)�(v) in hand, we
are able to do the following: (a) establish the asymptotic behavior of the
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scaled partition function Z(n, n;, na), (b) characterize the limiting behavior
of the distributions of Yn with respect to the scaled lattice Gibbs states
Pn, n;, na , and (c) describe the set of equilibrium macrostates for the con-
tinuum limit of the lattice model. This is the content of the following
theorem, which is our main result. The physical implications of the
theorem are discussed in Subsection 3.2.

Theorem 3.1. For each ; # R and a # C(Y), the asymptotic
behavior of the model with the scaled lattice Gibbs states Pn, n;, na defined
in (2.12) can be described as follows.

(a)

limn � �
1
n

log Z(n, n;, na)=& inf
+ # P%(X_Y)

[R(+ | %_\)+;H� (+)+A� (+)]

(b) With respect to Pn, n;, na , the sequence Yn satisfies the Laplace
principle and the large deviation principle on P%(X_Y) with rate function

J;, a(+).R(+ | %_\)+;H� (+)+A� (+)

& inf
& # P%(X_Y)

[R(& | %_\)+;H� (&)+A� (&)]

That is, for any bounded continuous function 8 mapping P%(X_Y) into R

lim
n � �

1
n

log |
0n

exp[n8(Yn)] dPn, n;, na= sup
+ # P%(X_Y)

[8(+)&J;, a(+)]

(c) Define E;, a.[+ # P%(X_Y) : J;, a(+)=0]. Then E;, a is a non-
empty compact subset of P%(X_Y), and if B is a Borel subset of
P%(X_Y) whose closure B� has empty intersection with E;, a , then
J;, a(B� ).inf+ # B� J;, a(+)>0 and for some C<�

Pn, n;, na[Yn # B]�C exp[&an J;, a(B� )] � 0 as n � �

Remark 3.2. (a) The concentration property given in part (c)
justifies calling E;, a the set of equilibrium macrostates. There is an equiv-
alent characterization of this set: by definition +* # E;, a if and only if
J;, a(+*)=0, and this occurs if and only if +* gives the infimum in
the variational formula in part (a). This large deviation characterization
of the equilibrium macrostates is a central feature of both our approach
and the approach of Michel and Robert.(27)
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(b) The set E;, a also arises in the study of weak limits of sub-
sequences of the Pn, n;, a-distributions of Yn , a property that further justifies
calling E;, a the set of equilibrium macrostates. This justification, as well as
that based on part (c) of Theorem 3.1, seems clearer than the justification
given in refs. 27 and 34, which is based on a concept of conditional concen-
tration. We state the following without proof; a proof will be given in ref. 16.
Any subsequence of Pn, n;, na[Yn # } ] has a subsubsequence converging
weakly to a probability measure Q;, a on P%(X_Y) that is concentrated
on E;, a ; i.e., Q;, a[(E;, a)c]=0. If E;, a consists of a unique point +, then the
entire sequence Pn, ;[Yn # } ] converges weakly to $+ . K

Proof of Theorem 3.1. (a) This proof relies on the properties of H�
and A� given in Lemma 4.4. By (3.3) and (3.5)

} 1n log Z(n, n;, na)&
1
n

log |
0n

exp[&n(;H� (Yn)+A� (Yn))] d6n }
= } 1n log |

0n

exp[&n(;Hn+An)] d6n

&
1
n

log |
0n

exp[&n(;H� (Yn)+A� (Yn))] d6n }
�|;| sup

` # 0n

|Hn(`)&H� (Yn(`))|�CK 2 |;| \log n
n +

1�2

Since H� and A� are bounded continuous functions mapping P%(X_Y) into
R [Lemma 4.4(a), (c)], the Laplace Principle satisfied by Yn with respect
to 6n [Lemma 4.3] yields

lim
n � �

1
n

log Z(n, n;, na)

= lim
n � �

1
n

log |
0n

exp[&n(;H� (Yn)+A� (Yn))] d6n

= sup
+ # P%(X_Y)

[&;H� (+)&A� (+)&R(+ | %�\)]

This proves part (a).

(b) The proof of this part uses the same methods as part (a), but
now with Pn, n;, na replacing 6n . For any bounded continuous function 8
mapping P%(X_Y) into R, again (3.3) and (3.5) yield

1253Maximum Entropy Principles in Two-Dimensional Turbulence



lim
n � �

1
n

log |
0n

exp[n8(Yn)] dPn, n;, na

= lim
n � �

1
n

log |
0n

exp[n(8(Yn)&;Hn&An)] d6n

& lim
n � �

1
n

log Z(n, n;, na)

= lim
n � �

1
n

log |
0n

exp[n(8(Yn)&;H� (Yn)&A� (Yn))] d6n

& lim
n � �

1
n

log Z(n, n;, na)

= sup
+ # P%(X_Y)

[8(+)&;H� (+)&A� (+)&R(+ | %_\)]

+ inf
& # P%(X_Y)

[;H� (&)+A� (&)+R(& | %_\)]

= sup
+ # P%(X_Y)

[8(+)&J;, a(+)]

J;, a is a lower semicontinuous mapping of the compact space P%(X_Y)
into [0, �] and so defines a rate function. We conclude that with respect
to Pn, n;, na the sequence Yn satisfies the Laplace principle on P%(X_Y)
with rate function J;, a . Since this is equivalent to the large deviation prin-
ciple with the same rate function, part (b) is proved.

(c) Since J;, a is a rate function, it assumes its minimum of 0 on
P%(X_Y). This gives the first assertion. The second assertion is a conse-
quence of the fact that if B� has empty intersection with E;, a , then
J;, a(+)>0 for each + # B� . Since J;, a is a rate function, J;, a(B� )>0. The
large deviation upper bound proved in part (b) completes the proof of
part (c). K

3.2. Interpretation of the Main Results

We now connect the mathematical results in Theorem 3.1 to the
statistical equilibrium models of coherent states in ideal two-dimensional
turbulence, thereby elucidating the physical implications of these results.

The hidden space P%(X_Y) consists of all possible macrostates
+=+(dx_dy) for the continuum models. In order to see how these
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measures offer a macroscopic description of the vorticity field, we decom-
pose any such + # P%(X_Y) as

+(dx_dy)=%(dx)�{(x, dy)

where %(dx)=dx on X and {(x, dy) is a stochastic kernel on Y given X.
That is, {(x, dy) is a family of probability measures on Y indexed by x # X

such that for each Borel subset C of Y the mapping x [ {(x, C ) is
measurable, and for each Borel subset B of X_Y

+[B]=|
B

%(dx) {(x, dy)

We summarize this decomposition by the notation +=%�{. A proof is
given in (ref. 13, Thm. A.5.4).

We recall that for ; # R and a # C(Y) the set E;, a of equilibrium
macrostates is defined by

E;, a.[+ # P%(X_Y) : J;, a(+)=0]

where

J;, a(+).R(+ | %_\)+;H� (+)+A� (+)

& inf
& # P%(X_Y)

[R(& | %_\)+;H� (&)+A� (&)]

In particular, if + # E;, a , then R(+ | %_\)<�; thus +<<%_\, and so the
stochastic kernel {(x, dy) appearing in the decomposition +=%�{ satisfies
{(x, } )<<\ for almost all x # X. For equilibrium macrostates +, this
property allows us to refine the decomposition of +. Indeed, for almost all
x # X there exists a density function p(x, } ).d{(x, } )�d\ such that p(x, } ) #
L1(Y) and

+(dx_dy)=%(dx)�[ p(x, y) \(dy)]

This refined decomposition shows that an equilibrium macrostate + is
uniquely specified by an x-parametrized family of probability densities on
Y with respect to the prior distribution \. We can now make the following
intuitive interpretation of such a macrostate: p(x, y) \(dy) is the probabil-
ity that the random vorticity field takes a value in an infinitesimal interval
dy when sampled in an infinitesimally small neigborhood dx of x. A macro-
scopic description of this kind is necessary because the underlying ideal
fluid dynamics can excite fluctuations of vorticity on arbitrarily fine scales
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at any point of the domain; it is sufficient because the correlation between
fluctuations at any two distinct points x and x$ vanishes in the continuum
limit. The use of these macrostates is an innovation of ref. 34, which calls
them Young measures by analogy with the parametrized measures that
arise in the study of weak limits of solutions to nonlinear partial differential
equations. However, these macrostates in the statistical equilibrium theory
have a natural probabilistic meaning as the one-point distributions of the
random vorticity. They capture the long-time average behavior of the
microscopic vorticity, not merely a possible weak limit of solutions |( } , t)
of (2.1) over some sequence of times t=tj � �.

The hidden process Yn establishes the link between the microstate
` # 0n , which provides the fine-grained description of the vorticity field,
and the macrostate + # P%(X_Y), which furnishes the corresponding
coarse-grained description. The central result in Theorem 3.1 is the large
deviation principle for Yn with respect to the scaled lattice Gibbs measures
Pn, n;, na . This result reveals that Yn concentrates on the set E;, a of equi-
librium macrostates, which minimize R( } | %_\)+;H� +A� .

From a technical viewpoint, we choose the hidden process Yn to
reduce the large deviation analysis of the scaled lattice Gibbs states to a
straightforward application of Laplace's principle. To this purpose we
defined Yn so that, first, it yields representations H� and A� of the functions
Hn and An determining the Gibbs weight, either as a suitable approxima-
tion or an exact expression and, second, it satisfies a large deviation prin-
ciple with respect to the product measures 6n built from the prior distribu-
tion \. The first requirement is met by constructing Yn from $-measures on
the range of vorticity Y spread over the domain X. The second require-
ment, that Yn satisfy a large deviation principle with respect to 6n , is more
subtle because this depends crucially on the topology of the hidden space
P%(X_Y). Heuristically, we can understand this large deviation principle
by saying that, for any given macrostate + # P%(X_Y), there are many
microstates ` for which Yn(`, } ) is close to + with respect to a suitable
metric d to be defined in Section 4.1; the multiplicity of these microstates
is quantified by the relative entropy R(+ | %_\).

In Section 4, instead of proving this rather subtle large deviation prin-
ciple directly, we offer a more intuitive approach. There, we approximate
Yn by a doubly indexed process Wn, r consisting of 2r empirical measures,
each constructed by aggregating microcells locally in the lattice. By this
technique, the large deviation principle for Yn is reduced to a large devia-
tion principle for Wn, r . This approach has the virtue that the large devia-
tion principle for Wn, r can be regarded as a two-parameter version of the
familiar Sanov theorem for empirical measures, from which it follows quite
naturally. The construction of Wn, r is based on a local averaging over an
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intermediate length scale controlled by the second index r. This construc-
tion not only explains the separation-of-scales behavior of these statistical
equilibrium models, but also is the mathematical expression of the physical
reasoning pioneered by Miller et al.(28, 29)

We now turn to the physical implications of the large deviation prin-
ciple proved in Theorem 3.1. For the sake of definiteness in this discussion,
let us assume that the set E;, a of equilibrium macrostates defined in part (c)
of Theorem 3.1 consists of a unique macrostate +=+;, a . This assumption
allows us to ignore degeneracies when explaining the physical implications
of the mathematical results.

Let f be any function in C(X_Y). The essential content of the
abstract statement that with respect to the statistical equilibrium measures
Pn, n;, na the sequence of P%(X_Y)-valued random variables Yn satisfies the
large deviation principle can be expressed in concrete terms by means of
the class of observables

Fn(`).
1
n

:
s # L

f (s, `(s)) (3.6)

and their representation functions

F� (+).|
X_Y

f (x, y) +(dx_dy)

With a suitable choice of f, these observables Fn are capable of discriminat-
ing the macroscopic properties of the vorticity field in the model. For
example, fix x* # X and consider f =(x, y)==&2k((x&x*)�=) y, where k(x)
is a nonconstant continuous function on X satisfying k�0, � k dx=1, and
having a unique maximum at 0. Then for small =>0 the corresponding
observable F =

n captures the local average of ` near x*. For any observable
Fn having the form (3.6), a direct consequence of the large deviation prin-
ciple is the fact that for any '>0

Pn, n;, na[ |Fn&F� (+;, a)|�'] � 0 as n � � (3.7)

To see this, we first note that by the uniform continuity of f

sup
` # 0n

|Fn(`)&F� (Yn(`))| � 0 as n � �

For sufficiently large n depending on ', we then find that

Pn, n;, na[ |Fn&F� (+;, a)|�']�Pn, n;, na[ |F� (Yn)&F� (+;, a)|�'�2]

�exp(&nI' �2)
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where

I'.inf[J;, a(+): + # P%(X_Y), |F� (+)&F� (+;, a)|�'�2]>0

The limit (3.7) now follows. This property shows that in the continuum
limit each observable Fn concentrates around the value of its representation
function F� at the equilibrium macrostate +;, a .

We now turn our attention to the first-order variational conditions for
the equilibrium macrostates +, which are characterized as zeroes of the rate
function J;, a or equivalently as minimizers of R( } | %_\)+;H� +A� . These
first-order variational conditions are most readily expressed in terms of the
decomposition +(dx_dy)=%(dx)�[ p(x, y) \(dy)]. As shown in refs. 34
and 39, the variational conditions reduce to the equation

p(x, y)=
exp(&;�� (x) y&a( y))

�Y exp(&;�� (x) y&a( y)) \(dy)
(3.8)

where the mean streamfunction �� =G|� is determined as in (2.2); |� denotes
the mean vorticity

|� (x).|
Y

yp(x, y) \(dy)

Equation (3.8) is implicit and nonlinear in p because of the dependence on
the mean streamfunction �� . This equation for p reduces to a nonlinear
elliptic equation for �� itself upon taking the expectation over y; namely,

|� =&2�� =4$;, a(�� ) (3.9)

where for . # R

4;, a(.).&
1
;

log |
Y

exp(&;.y&a( y)) \(dy)

The mean-field equation (3.9) is one of the major predictions of the
theory. It ensures that the mean flow is steady, and moreover it supplies
the particular functional dependence of the mean vorticity on the mean
streamfunction. From a deterministic viewpoint, the vorticity-streamfunc-
tion profile |� =4$(�� ) can be arbitrary for steady flow, although the further
condition of stability requires that 4$ be monotonic. On the other hand,
each statistical equilibrium model produces a distinguished profile and
explains how this profile is determined by the parameters ; and a.
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Various special cases of the theory are examined in detail in the
literature, all based upon some simple choice of prior distribution and a
corresponding reduction of the continuum of enstrophy integrals. Several
such reductions are detailed in ref. 39. For the purpose of the present sum-
mary, it suffices to mention the simplest case applicable to the torus
geometry; namely, vortex patches on X=T 2. The initial vorticity field in
this case takes on two values; say, |0=+1 in U/X and |0=&1 in
X"U, where the area of U is half the area of X. Then it can be shown that
the enstrophy constaints in both the Miller�Robert model and
Turkington's model play no role, and hence the function a appearing in
4;, a reduces to a( y)=:y, where : is the multiplier for the total circulation
constraint. Consequently, the mean-field equation takes an especially simple
form in either model. In the Miller�Robert model it is

&2�� =tanh(&:&;�� )

while in Turkington's model it is

&2�� =coth(&:&;�� )&(&:&;�� )&1

In each model the ergodic mixing of the two-level initial vorticity |0 results
in a final vorticity |� with a distinctive profile that mediates between those
extreme levels. In both models ;<0, and so the coherent states have
negative temperature. The contrast between the prediction of the two
models is discussed in detail in ref. 39. In brief, Turkington's model allows
a mixing of microscopic vorticity on a range of small scales, while the
Miller�Robert model enforces a single microscale on the mixing. The prior
distribution \(dy) in the Miller�Robert model is atomic at y=\1, while
in Turkington's model it is uniform on the interval &1� y�+1. The
macroscopic manifestation of the difference at the microscopic scales is that
the vorticity-streamfunction profile in Turkington's model is more gradual
and takes the asymptotic values \1 more slowly than the corresponding
profile in the Miller�Robert model.

3.3. Maximum Entropy Principles

While the parametrization of the set E;, a of equilibrium macrostates by
the inverse temperature ; and the enstrophy profile function a is con-
venient in the analysis of the statistical equilibrium lattice models, it is not
the most natural way to parametrize the set of equilibrium macrostates in
the continuum models. Instead, for applications to fluid dynamics, it is
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often better to parametrize the set of equilibrium macrostates by the values
of the energy and the generalized enstrophy. One views these values as
parameters derived from the given initial data, while one regards the
corresponding ; and a as unknowns that are determined along with the
equilibrium macrostate. This reformulation conforms with the idea that the
equilibrium macrostate describes the final mixed state that ensues after an
ergodic evolution from a specified initial state. In this context it is useful to
view the equilibrium macrostates in the continuum models as being
governed by constrained minimization problems, in which the objective
functional is the relative entropy and the constraints involve the energy
representation function and the global vorticity distribution; the constraint
values are derived from an initial vorticity field |0. The parameters ; and
a are then realized as Lagrange multipliers dual to these respective con-
straints. The possibility of two different parametrizations of the equilibrium
macrostates��on the one hand, by the inverse temperature ; and the
enstrophy profile function a and on the other hand, by values of the energy
and the global vorticity distribution��involves issues of the equivalence of
ensembles, which we shall briefly address later in this subsection.

We now proceed to state these constrained minimization problems,
considering the Miller�Robert model and Turkington's model separately.
Following the usual convention in the physical literature, in both cases we
refer to them as ``maximum entropy principles'' or as ``constrained maxi-
mum entropy principles'' even though we minimize the relative entropy R,
which differs from the physical entropy S.&R by a minus sign.

By a calculation at the physical level of rigor, the paper (ref. 34) shows
that in the continuum limit, equilibrium macrostates + in the Miller�
Robert model are solutions of the constrained maximum entropy principle

minimize R(+ | %_\) over + # P%(X_Y) subject to

H� (+)=H(|0), |
X

+(dx_ } )=|
X

$|0(x)( } ) dx (3.10)

In this model the prior distribution \( } ) is defined by the second integral
in the preceding display and is supported on the closure of range of |0.
The constrained maximum entropy principle (3.10) is particularly appeal-
ing since it is an obvious analogue of the constrained minimization
problem (2.16) that defines the lattice Gibbs measure Pn, ;, a . The varia-
tional calculation for solutions to (3.10) is discussed in ref. 34, and so we
shall not present a rigorous justification of it here.

We now turn to Turkington's model. By a calculation at the physical
level of rigor, the paper (ref. 39) shows that in the continuum limit,
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equilibrium macrostates + in Turkington's model are solutions of the con-
strained maximum entropy principle

minimize R(+ | %_\) over + # P%(X_Y) subject to H� (+)=H(|0),

|
X_Y

#( y, _) +(dx_dy)�|
X

#(|0(x), _) dx for all _ # Y (3.11)

In contrast to the Miller�Robert model, the prior distribution \ for this
model is the uniform measure (2.18) on the smallest closed interval Y con-
taining the range of |0. Also, the Miller�Robert constraint on the global
vorticity distribution is relaxed in this model to a family of convex
inequalities parametrized by _ # Y. The variational calculation for solutions
to (3.11) involves the Kuhn�Tucker conditions. It is discussed in ref. 39.

We now consider the relationship between the set E;, a of equilibrium
macrostates, which is defined in part (c) of Theorem 3.1, and solutions of
the constrained maximum entropy principles (3.10) and (3.11). To simplify
the discussion, we shall restrict our comments to the Miller�Robert model;
Turkington's model is handled similarly. By definition, for given ; # R
and a # C(Y) a measure + belongs to E;, a if and only if + minimizes
R( } | %_\)+;H� +A� . One can show that the first-order variational condi-
tions for this minimization problem coincide with the first-order variational
conditional conditions for the constrained maximum entropy principle
(3.10), where ; and a arise as Lagrange multipliers. These first-order varia-
tional conditions are given by (3.8). However, the correspondence between
minimizers of R( } | %_\)+;H� +A� and solutions of the maximum entropy
principle is not obvious.

It is useful to investigate this relationship in the context of the equiv-
alence of ensembles; namely, the canonical ensemble, which is defined by
the scaled Gibbs measures Pn, n;, na , and the microcanonical ensemble,
which ideally is defined by conditioning the product measures 6n(d`).
>s # L \(d`(s)) on configurations satisfying the following constraints:

Hn(`)=E,
1
n

:
` # L

$`(s)(dy)=\(dy) (3.12)

These are microcanonical analogues of (2.15) and (2.14), respectively. In a
sequel to the present paper, (16) we prove a conditional large deviation prin-
ciple for the hidden process Yn with respect to product measures condi-
tioned on sets that approximate these constraints. For ease of exposition in
this paragraph, we will refer to the constraints (3.12) given in their ideal
form, even though the theorems in ref. 16 involve some approximation in
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the conditioning. We label the rate function in the conditional large devia-
tion principle as IE, \. By analogy with the definition of E;, a as the set of
minimizers of the rate function J;, a in Theorem 3.1, we define EE, \ to be
the set of + # P%(X_Y) minimizing the rate function I E, \ in the conditional
large deviation principle. The form of this rate function shows that + mini-
mizes IE, \ if and only if + solves the maximum entropy principle (3.10).
In essentially the same way that we justified the designation of E;, a as the
set of equilibrium macrostates with respect to the Pn, n;, na -distributions
[Theorem 3.1(c) and Remark 3.2(b)], one can justify the designation of
EE, \ as the set of equilibrium macrostates with respect to the conditioned
6n -distributions of Yn . In ref. 16 the relationship between canonical equi-
librium macrostates and microcanonical equilibrium macrostates is investi-
gated under appropriate assumptions on the model.

We next show a simple but important relationship between canonical
equilibrium macrostates and solutions of the constrained maximum
entropy principle (3.10). Namely, for given ; # R and a # C(Y), any equi-
librium macrostate +;, a # E;, a solves the constrained maximum entropy
principle (3.10) when the constraint values in this variational problem are
derived from +;, a itself; i.e.,

H� (+)=H� (+;, a), |
X

+(dx_ } )=|
X

+;, a(dx_ } ) (3.13)

Since +;, a # E;, a , for any + # P%(X_Y) we have

R(+;, a | %_\)+;H� (+;, a)+A� (+;, a)�R(+ | %_\)+;H� (+)+A� (+)

If + also satisfies the constraints in (3.13), then the second constraint
implies that

A� (+)=|
X_Y

a( y) +(dx_dy)=|
X_Y

a( y) +;, a(dx_dy)=A� (+;, a)

Hence for all such +, R(+;, a | %_\)�R(+ | %_\). We conclude that +;, a

satisfies the maximum entropy principle (3.10) with the constraints (3.13).
This proves the claim.

This result and its analogue for Turkington's model demonstrate that
the constrained maximum entropy principles governing these continuum
models are derived from Gibbsian equilibrium statistical mechanics by
means of the large deviation principle in Theorem 3.1, at least over the
range of constraint values determined by equilibrium macrostates. Within
the context of canonical ensembles, this result is complete in the sense that
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every equilibrium macrostate is identified with a solution to the corre-
sponding constrained maximum entropy principle. However, in order to
establish a one-to-one correspondence between equilibrium macrostates
and these solutions, it is necessary to impose further conditions that ensure
the equivalence of the canonical and microcanonical ensembles. An analysis
of the microcanonical ensemble and a general sufficient condition for equiv-
alence of ensembles is given in a subsequent paper (ref. 16).

For the purpose of the present discussion, let us illustrate this condi-
tion in the special case of the Miller�Robert model already mentioned in
the last paragraph of Subsection 3.2. Namely, we take the prior distribu-
tion to be \(dy). 1

2 $1(dy)+ 1
2 $&1(dy), for which one can show that the

enstrophy constraints in (3.10) reduce to the compatibility condition
�X |� dx=0. In this case a sufficient condition that the microcanonical equi-
librium set EE, \ coincide with the corresponding canonical equilibrium set
is that the equilibrium relative entropy R(EE, \ | %_\) be a strictly convex
function of E. In turn, this convexity condition can be verified numerically
by solving the constrained maximum entropy problem over the range of
admissible energy values E # [0, Emax]. A numerical method for solving
problems of this kind is presented in ref. 40. It is an iterative algorithm that
increases physical entropy at every iteration, and it is provably convergent
to the equilibrium set EE, \ from any admissible initial guess. Computation
of the solution sets in this simple case of the Miller�Robert model on
the unit torus shows that the required strict convexity property is indeed
valid. Numerous other cases of physical interest have also been com-
puted.(2, 5, 11, 20, 40, 41)

4. PROPERTIES OF THE HIDDEN PROCESS

The proof of Theorem 3.1 relies on properties of the hidden process Yn ,
the energy representation function H� , and the generalized enstrophy repre-
sentation function A� , which are defined in (3.1), (3.2), and (3.4), respectively.
In this section we shall complete the proof of our main theorem by estab-
lishing these properties.

4.1. Asymptotics of the Hidden Process

A key step in the proof of Theorem 3.1 is to show the Laplace prin-
ciple for the hidden process

Yn(dx_dy)=Yn(`, dx_dy).dx� :
s # L

1M(s)(x) $`(s)(dy)
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with respect to the product measures 6n . One of the key innovations of
this paper is to prove the Laplace principle for Yn by approximating Yn by
another, doubly indexed process for which the Laplace principle can be
shown directly. This doubly indexed process is built from local averages of
Yn and is defined as follows. Given n=22m, we consider a dyadic partition
of the lattice L into 2r blocks, with r even and r<2m, each block contain-
ing n�2r lattice sites. In correspondence with this partition of the lattice into
blocks, we have a dyadic partition [Dr, k , k=1,..., 2r] of the torus X=T 2

into macrocells of the form

[(i&1)�2r�2, i�2r�2)_[( j&1)�2r�2, j�2r�2), i, j # [1,..., 2r�2]

Each such macrocell Dr, k is the union of n�2r microcells M(s), each of
which is a square having area 1�n and containing one site s of L. With
respect to a partition of this kind, we define for ` # 0n.Yn

Wn, r(dx_dy)=Wn, r(`, dx_dy).dx� :
2r

k=1

1Dr, k
(x)

1
n�2r :

s # Dr, k

$`(s)(dy)

(4.1)

Wn, r is obtained from Yn by replacing, for each s # Dr, k , the point mass
$`(s) by the average (n�2r)&1 �s # Dr, k

$`(s) over the n�2r sites contained in
Dr, k . Wn, r is a random measure taking values in P%(X_Y).

Our purpose in introducing the doubly indexed process Wn, r can now
be explained. The spatial scale of the sets Dr, k is intermediate between the
scale of the torus X and the scale of the microcells M(s). The local averag-
ing over the sets Dr, k produces Wn, r , which is a sum of terms

Ln, r, k(dy)=Ln, r, k(`, dy).
1

n�2r :
s # Dr, k

$`(s)(dy)

indexed by k=1,..., 2r. Since each of these terms is an empirical measure
for the i.i.d. sequence [`(s), s # Dr, k], for each r and k # [1,..., 2r] Sanov's
Theorem immediately implies that Ln, r, k satisfies a large deviation principle
as n tends to infinity.(9, 10, 13) As we will see, it then follows that the doubly
indexed process Wn, r satisfies a two-parameter large deviation principle as
n and r go to infinity. This key result is stated in Lemma 4.1 in the form
of an equivalent Laplace principle. Then in Lemma 4.2 we show that as r
tends to infinity the distance between Yn and Wn, r in an appropriate metric
goes to zero uniformly in n. From this appoximation we readily obtain the
desired Laplace principle for Yn , which is stated in Lemma 4.3.
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Lemma 4.1. With respect to the measures 6n , the sequence Wn, r

satisfies the two-parameter Laplace principle on P%(X_Y) with rate func-
tion R( } | %_\). In other words, for any bounded continuous function 8
mapping P%(X_Y) into R

lim
r � �

lim
n � �

1
n

log |
P%(X_Y)

exp[n8(Wn, r)] d6n

= sup
+ # P%(X_Y)

[8(+)&R(+ | %_\)]

This lemma is a special case of a general theorem (ref. 1, Thm. 4.1)
that applies to a class of processes that includes the random measures Wn, r .
Because of the centrality of Lemma 4.1 in the present paper, we prove it in
Section 5. There it is stated in the equivalent form of a two-parameter large
deviation principle for Wn, r on P%(X_Y) with rate function R( } | %_\).
The proof of the equivalence of this large deviation principle with the
Laplace principle carries over by making obvious modifications in the
proof for singly indexed processes (ref. 13, Thms. 1.2.1 and 1.2.3).

The approximation result relating Yn and Wn, r uses a metric on
P%(X_Y) that is compatible with the topology of weak convergence of
measures. Let BL(X_Y) denote the space of bounded, Lipschitz contin-
uous functions f mapping X_Y into R and define a norm on this space by

& f &BL. sup
(x, y)

| f (x, y)|+ sup
(x, y)=% (x$, y$)

| f (x, y)& f (x$, y$)|
|x&x$|+| y& y$|

Then metrize P(X_Y) with the dual-bounded-Lipschitz metric

d(+, &).sup {} |X_Y

f d+&|
X_Y

f d& } : f # BL(X_Y) with & f &BL�1=
(4.2)

When metrized by d, the hidden space P%(X_Y), being a closed subspace
of P(X_Y), is a compact Polish space (ref. 12, Prop. 11.3.2, Thm. 11.3.3,
Cor. 11.5.5). The approximation result is stated next.

Lemma 4.2. For all n=22m and even r # N satisfying r<2m,
d(Yn , Wn, r)�- 2�2r�2.
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Proof. We first rewrite Yn and Wn, r in a common form by introduc-
ing, for each k # [1,..., 2r], a sum over the n�2r sites in Dr, k=�s$ # Dr, k

M(s$).
Namely,

Yn(dx_dy)=dx� :
2r

k=1

:
s # Dr, k

1
n�2r :

s$ # Dr, k

1M(s)(x) $`(s)(dy)

Wn, r(dx_dy)=dx� :
2r

k=1

:
s # Dr, k

1
n�2r :

s$ # Dr, k

1M(s$)(x) $`(s)(dy)

Then for any f # BL(X_Y) with & f &BL�1, we have

} |X_Y

f dYn&|
X_Y

f dWn, r }
=

1
n�2r } :

2r

k=1

:
s, s$ # Dr, k

\|M(s)
f (x, `(s)) dx&|

M(s$)
f (x$, `(s)) dx$+ }

=
n

n�2r } :
2r

k=1

:
s, s$ # Dr, k

|
M(s)

|
M(s$)

[ f (x, `(s))& f (x$, `(s))] dx dx$ }
�

n
n�2r :

2r

k=1

:
s, s$ # Dr, k

|
M(s)

|
M(s$)

|x&x$| dx dx$

=2r :
2r

k=1
|

Dr, k
|

Dr, k

|x&x$| dx dx$

� max
k=1,..., 2r

diam(Dr, k)=- 2�2r�2

It follows that d(Yn , Wn, r)�- 2�2r�2, as claimed. K

Finally, we derive the desired Laplace principle for Yn from the two-
parameter Laplace principle for Wn, r .

Lemma 4.3. With respect to the measures 6n , the sequence of
random measures Yn defined in (3.1) satisfies the Laplace principle on
P%(X_Y) with rate function R( } | %_\). In other words, for any bounded
continuous function 8 mapping P%(X_Y) into R

lim
n � �

1
n

log |
0n

exp[n8(Yn)] d6n= sup
+ # P%(X_Y)

[8(+)&R(+ | %_\)] (4.3)

Proof. By [ref. 13, Cor. 1.2.5], it suffices to prove the Laplace limit
(4.3) for all bounded, Lipschitz continuous functions 8 mapping P%(X_Y)
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into R. Let 8 be such a function with Lipschitz constant M and take $>0.
The previous lemma and the two-parameter Laplace principle for Wn, r in
Lemma 4.1 imply the following: for all sufficiently large, even r, we have
d(Yn , Wn, r)�$ for all n=22m satisfying 2m>r and

lim sup
n � �

1
n

log |
0n

exp[n8(Wn, r)] d6n

� sup
+ # P%(X_Y)

[8(+)&R(+ | %_\)]+$

For all such r

lim sup
n � �

1
n

log |
0n

exp[n8(Yn)] d6n

�lim sup
n � �

1
n

log |
0n

exp[n8(Wn, r)+nMd(Yn , Wn, r)] d6n

� sup
+ # P%(X_Y)

[8(+)&R(+ | %_\)]+$+M$

Similarly,

lim inf
n � �

1
n

log |
0n

exp[n8(Yn)] d6n

� sup
+ # P%(X_Y)

[8(+)&R(+ | %_\)]&$&M$

Since $>0 is arbitrary, the proof of the lemma is complete. K

4.2. Properties of H� and A�

It remains to show the properties of H� and A� asserted in (iii) and (iv)
at the beginning of Subsection 3.1. The identity (3.5) involving A� and An

is immediate from the definition of Yn . On the other hand, because of the
singularity of the Green's function g(x&x$) along the diagonal x=x$,
some effort is required to show that H� evaluated at the hidden process Yn

provides the approximation to the Hamiltonian Hn specified in (3.3). For
this proof we use the Fourier representations of g and of the lattice Green's
functions gn , thereby exploiting the prototype geometry X=T 2. A different
proof that would apply to other geometries and boundary conditions could
be based on the mildness of the singularity in g, but it would be more com-
plicated in our case.
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Lemma 4.4. The energy representation function H� defined in (3.2)
and the generalized enstrophy representation function A� defined in (3.4)
have the following properties.

(a) H� is a bounded continuous function mapping P%(X_Y) into R.

(b) There exists C<� such that for each n

sup
` # 0n

|H� (Yn(`))&Hn(`)|�CK 2 \log n
n +

1�2

(c) A� is a bounded continuous function mapping P%(X_Y) into R
and

A� (Yn(`))=An(`) for all ` # 0n

As a prelude to the proof, we recall some basic facts about the discrete
Fourier transform as they pertain to our lattice model.(38) Each microstate
` # 0n has a representation

`(s)= :
z # L*

�̀ (z) e2?iz } s

as a finite Fourier sum over

L*.[z=(z1 , z2) # Z2 : &2m&1<z1 , z2�2m&1]

where the coefficients �̀ (z) are given by

�̀ (z)=
1
n

:
s # L

`(s) e&2?iz } s

Since ` is a real-valued function on L, it follows that �̀ (&z)= �̀ (z)* and
�̀ (z+(2m, 0))= �̀ (z+(0, 2m))= �̀ (z). These definitions explain the definition
of the lattice Hamiltonian Hn and the lattice Green's function gn in Section 2.
Indeed, the finite sum

Hn(`)= 1
2 :

0{z # L*

|2?z|&2 | �̀ (z)|2 (4.4)

which coincides with the expression (2.8), is the spectral truncation of the
Fourier series expansion for the Hamiltonian defined in (2.4); namely,

H(|)= 1
2 :

0{z # Z2

|2?z| &2 ||̂(z)| 2, where |̂(z).|
X

|(x) e&2?iz } x dx

1268 Boucher et al.



We now turn to the proof of Lemma 4.4. Throughout, C denotes a
generic positive constant that might vary from line to line.

Proof of Lemma 4.4. (a) The boundedness and continuity of H� are
deduced from the representation formula

H� (+)= 1
2 :

0{z # Z2

|2?z|&2 |'̂(z)|2 (4.5)

in which

'̂(z)='̂(+, z).|
X_Y

ye&2?iz } x+(dx_dy)

The quantities ['̂(z), z # Z2] are the Fourier coefficients of the mean function

'(x)='(+, x).|
Y

y {(x, dy)

where { is the stochastic kernel appearing in the decomposition +(dx_dy)
=%(dx)�{(x, dy). As discussed at the beginning of Subsection 3.2,
any + # P%(X_Y) admits such a decomposition with %(dx)=dx on X and
supp {(x, } )/Y for all x # X. The formula (4.5) therefore follows directly
from the definition (3.2) of H� .

To prove the desired bound for H� , we observe that (4.5) yields

H� (+)�C :
z # Z2

|'̂(z)| 2=C |
X

'(x)2 dx�CK 2

where K.max[ | y|: y # Y].
To prove the continuity of H� , let [+n , n # [N]] be a sequence in

P%(X_Y) converging weakly to +. Then the corresponding '̂(+n , z) con-
verge to '̂(+, z) for every z # Z2, as is clear from the definition of '̂. Now
the desired convergence of H� (+n) to H� (+) follows from (4.5) by splitting
this sum over z into two parts, a sum over |z|�M for some suitably large
M and the complementary sum. Since the complementary sum is bounded
by CK2M&2, taking M as large as desired and sending n � � completes
the proof.

(b) For ` # 0n we introduce the piecewise constant function

!(x)=!(`, x). :
s # L

1M(s)(x) `(s) for x # X
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and its Fourier transform

!� (z)=|
X

!(x) e&2?iz } x dx= :
s # L

`(s) |
M(s)

e&2?iz } x dx

The proof that H� (Yn(`)) approximates Hn(`) is based on the Fourier
representation formula

H� (Yn(`))= 1
2 :

0{z # Z2

|2?z|&2 |!� (z)|2 (4.6)

which is a consequence of (4.5) and the fact that '̂(Yn(`), z)=!� (`, z) for
` # 0n and z # Z2. Given this expression for H� (Yn(`)) and the analogous
expression (4.4) for Hn(`), we can estimate their difference as follows:

|H� (Yn(`))&Hn(`)|

� 1
2 :

0{z # L*

|2?z|&2 | |!� (z)|2&| �̀ (z)| 2|+ 1
2 :

z # Z2"L*

|2?z| &2 |!� (z)|2

.E1+E2

where we use the shorthand E1 and E2 to denote these two terms.
We estimate E1 by first noting that for every z # L*

|!� (z)& �̀ (z)|= } :
s # L

`(s) |
M(s)

[e&2?iz } x&e&2?iz } s] dx }
�

1
n

:
s # L

K |2?z| [diam M(s)]

=CKn&1�2 |z|

Hence

E1�C :
0{z # L*

|z|&2 |!� (z)& �̀ (z)| ( |!� (z)+ �̀ (z)| )

�C { :
0{z # L*

|z|&4 |!� (z)& �̀ (z)| 2=
1�2

{2 :
0{z # L*

[|!� (z)|2+| �̀ (z)| 2]=
1�2

�CK2n&1�2 { :
0{z # L*

|z|&2=
1�2

�CK2n&1�2(log n)1�2

which has the desired form.
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We estimate E2 in a similar fashion, obtaining

E2�C :
z # Z2"L*

|z|&2 |!� (z)|2

�C { :
z # Z2"L*

|z| &4 |!� (z)|2=
1�2

{ :
z # Z2"L*

|!� (z)|2=
1�2

�CK2 { :
z # Z2"L*

|z|&4=
1�2

�CK2n&1�2

These estimates for E1 and E2 are both uniform over ` # 0n . Combining
them gives the claimed approximation.

(c) Since a is a continuous function mapping Y into R, the bounded-
ness and continuity of A� are obvious. For ` # 0n

A� (Yn(`))=|
X_Y

a( y) Yn(`, dx_dy)=
1
n

:
s # L

a(`(s))=An(`) K

5. PROOF OF THE LARGE DEVIATION PRINCIPLE FOR Wn, r

In this section we outline a proof of Lemma 4.1. Specifically, we shall
prove that Wn, r satisfies the two-parameter large deviation principle on
P%(X_Y) with rate function R( } | %_\) with respect to the probability
measures 6n . That is, we shall establish the following:

v Large deviation upper bound. For any closed subset F of P%(X_Y)

lim sup
r � �

lim sup
n � �

1
n

log 6n[Wn, r # F ]�&R(F | %_\)

v Large deviation lower bound. For any open subset G of P%(X_Y)

lim inf
r � �

lim inf
n � �

1
n

log 6n[Wn, r # G ]� &R(G | %_\)

This large deviation principle is equivalent to the Laplace principle stated
in Lemma 4.1.

While the proofs of these large deviation bounds involve a number of
technicalities, it is surprisingly easy to motivate this large deviation prin-
ciple by a heuristic argument. The ease with which we can deduce the large
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deviation behavior of Wn, r is the main technical advantage of our
approach. We also gain a conceptual advantage from the fact that Wn, r is
a natural coarse-graining of the random vorticity field. Before proceeding
with the proofs, we indicate the heuristic reasoning that suggests the large
deviation behavior of Wn, r .

We write the doubly indexed process in the form

Wn, r(dx_dy)=dx� :
2r

k=1

1Dr, k
(x) Ln, r, k(dy) (5.1)

where

Ln, r, k(dy)=Ln, r, k(`, dy).
1

n�2r :
s # Dr, k

$`(s)(dy)

We recall that n=22m and that r is even with n>2r. Since Dr, k contains
n�2r lattice sites s, each Ln, r, k is an empirical measure taking values in
P(Y). Since [`(s), s # L] is an independent collection of random variables
with common distribution \, Sanov's Theorem implies that for each r and
k the sequence of empirical measures Ln, r, k satisfies the large deviation
principle on P(Y) with scaling constants n�2r and rate function R( } | \), the
relative entropy on P(Y).(9, 10, 13) In other words, for any closed subset F
of P(Y)

lim sup
n � �

1
n�2r log 6n[Ln, r, k # F ]�&R(F | \)

and for any open subset G of P(Y)

lim inf
n � �

1
n�2r log 6n[Ln, r, k # G]�&R(G | \)

Now let us suppose that + # P%(X_Y) has finite relative entropy with
respect to %_\ and has the special form

+(dx_dy)=dx�{(x, dy), where {(x, dy). :
2r

k=1

1Dr, k
(x) {k(dy) (5.2)

and {1 ,..., {2r are probability measures on Y. The representation (5.1),
Sanov's Theorem, and the independence of Ln, r, 1 ,..., Ln, r, 2r suggest that
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lim
n � �

1
n

log 6n[Wn, rt+]= lim
n � �

1
n

log 6n[Ln, r, kt{k , k=1,..., 2r]

=
1
2r :

2r

k=1

lim
n � �

1
n�2r log 6n[Ln, r, kt{k]

r &
1
2r :

2r

k=1

R({k | \)

=&|
X

R({(x, } ) | \) dx

=&|
X
|

Y \log
d{(x, } )
d\( } )

( y)+ {(x, dy) dx

=&|
X_Y \log

d+
d(%_\)

(x, y)+ +(dx_dy)

=&R(+ | %_\)

The two-parameter large deviation principle for Wn, r with rate function
R( } | %_\) is therefore certainly plausible in view of the fact that any
measure + # P%(X_Y) can be well approximated, as r � �, by a sequence
of measures of the form (5.2). This approximation property is proved in
Lemma 3.2 of ref. 1.

We now prove the large deviation upper bound and lower bound
for Wn, r . Our proofs will follow the above heuristic reasoning, but will
replace vague statements such as Wn, rt+ by precise statements such as
Wn, r # B(+, =) and Wn, r # B� (+, =). Here and in what follows, B(+, =) denotes
the open ball centered at + with radius = and B� (+, =) denotes the closed ball
centered at + with radius =. These balls are defined with respect to the dual-
bounded-Lipschitz metric d in (4.2).

Proof of the Large Deviation Upper Bound for Wn, r . Since
P%(X_Y) is compact, a closed subset F of this space is automatically com-
pact. By a standard covering argument, the large deviation upper bound
for compact sets follows immediately from the large deviation upper bound
for closed balls. We now prove the bound for closed balls.

Let +=%�{ # P%(X_Y) and =>0 be given. For any n=22m and even
r with r<2m, we define the closed set

Fr, =.{(&1 ,..., &2r) # P(Y)2r
: %(dx)� :

2r

k=1

1Dr, k
(x) &k(dy) # B� (+, =)=
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We also define P%, r(X_Y) to be the set of + # P%(X_Y) having the form

+(dx_dy)=%(dx)�&(x, dy), where &(x, dy)= :
2r

k=1

1Dr, k
(x) &k(dy)

for some &1 ,..., &2r # P(Y). By Sanov's Theorem and Lemmas 2.5, 2.6,
2.7, and 2.8 in ref. 24, for each r the sequence [(Ln, r, 1 ,..., Ln, r, 2r),
n=22m, m # N] satisfies the large deviation principle on P(Y)2r

with
scaling constants n�2r and rate function

(&1 ,..., &2r) [ :
2r

k=1

R(&k | \)

Since %[Dr, k]=1�2r,

lim sup
n � �

1
n�2r log 6n[Wn, r # B� (+, =)]

=lim sup
n � �

1
n�2r log 6n[(Ln, r, 1 ,..., Ln, r, 2r) # Fr, =]

�&2r inf { 1
2r :

2r

k=1

R(&k | \) : (&1 ,..., &2r) # Fr, ==
=&2r inf {|X

R(&(x, } ) | \( } )) dx : dx�&(x, dy) # B� (+, =) & P%, r(X_Y)=
�&2r inf {|X

R(&(x, } ) | \( } )) dx : dx�&(x, dy) # B� (+, =)=
=&2rR(B� (+, =) | %_\)

Dividing through by 2r and taking the limit superior as r � � yields the
large deviation upper bound for the closed ball B� (+, =). K

Proof of the Large Deviation Lower Bound for Wn, r . To prove the
large deviation lower bound, we will need the following Jensen-type
inequality whose proof can be found in Lemma 3.5 in ref. 1.

Lemma 5.1. Let # be a probability measure on X and { a
stochastic kernel on Y given X. Then

|
X

R({(x, } ) | \( } )) #(dx)�R \|X

{(x, } ) #(dx) | \( } )+

1274 Boucher et al.



Let + be any measure in the open set G and let {(x, dy) be the
stochastic kernel on Y given X appearing in the decomposition
+(dx_dy)=%(dx)�{(x, dy). We choose =>0 so that B(%�{, =)/G. For
even r and k # [1,..., 2r] define the probability measures on Y

{r
k( } ).2r |

Dr, k

{(x, } ) dx

and the stochastic kernels on Y given X

{r(x, dy). :
2r

k=1

1Dr, k
(x) {r

k(dy)

By Lemma 3.2 in ref. 1, %�{r O %�{ as r � �. Hence there exists N such
that for all even r�N B(%�{r, =�2)/B(%�{, =). We also define the open
set

Gr, =.{(&1 ,..., &2r) # P(Y)2r
: %(dx)� :

2r

k=1

1Dr, k
(x) &k(dy) # B(%�{r, =�2)=

Then for all even r�N the large deviation principle satisfied by
[(Ln, r, 1 ,..., Ln, r, 2r), n=22m, m # N] and Lemma 5.1 imply that

lim inf
n � �

1
n

log 6n[Wn, r # G ]

�lim inf
n � �

1
n

log 6n[Wn, r # B(%�{r, =�2)]

=
1
2r lim inf

n � �

1
n�2r log 6n[(Ln, r, 1 ,..., Ln, r, 2r) # Gr, =]

� &
1
2r inf { :

2r

k=1

R(&k | \) : (&1 ,..., &2r) # Gr, ==�&
1
2r :

2r

k=1

R({r
k | \)

=&
1
2r :

2r

k=1

R \2r |
Dr, k

{(x, } ) dx } \( } )+
� & :

2r

k=1
|

Dr, k

R({(x, } ) | \( } )) dx

=&|
X

R({(x, } ) | \( } )) dx=&R(+ | %_\)
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The last equality is a consequence of the chain rule (ref. 13, Cor. C.3.2). It
follows that

lim inf
r � �

lim inf
n � �

1
n

log 6n[Wn, r # G]�&R(+ | %_\)

Since + # G is arbitrary, the proof of the large deviation lower bound for
the open set G is complete. K
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